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Electromagnetic field analysis

Low- High-
frequency frequency
50~60Hz MHz, GHz
(quasi-static) | (wave)
Time domain FEM FEM FDTD
Linear BEM BEM FEM
Non-Linear BEM
Frequency FEM FEM
domain BEM BEM
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Basic equations
Maxwell equations
VXH=] +E;—€ (1)

G):;
VXE = ~ 3 (2)
V-B=0 (3)
V-D=p (4)

Constitutive equations
B = uH (5)
D = ¢E (6)

Ohm’s law
] — oFE (7)

H: Magnetic field

E: Electric field

B: Magnetic flux density
D: Electric flux density

p: Electric charge density
J: Current density

u: Permeability

g. Permittivity

o: Conductivity

* lwashita lab.




High frequency electromagnetic
f|e|d ana|ySeS (brief introduction)

» Mostly linear analyses

» Time-domain analyses

- The most popular method is FDTD (finite differential
time domain) method.

» Frequency domain analyses

o FEM (finite element method) is often used.
> Basic equation

1 o _
VX—(VXE)—C()Z(€+_—)E=ICL)]0
u iw

Jo: external current density

> The linear system derived from FEM is ill-conditioned

* lwashita lab.




Low frequency electromagnetic
field analyses (eddy current analysis)

4
>

The displacement current is ignored.
Non-linear problems are solved in practical
simulations for motors, transformers, etc.

Potential formulation is often used.
- B =V x A, where Ais the vector potential.
o J=J.+]o, Where J. is the eddy current in the conductive

region.
> J, =0E E = — a(“g;ad"’), where ¢ is the electric scalar potential.

Gauge condition should be payed attention to.

- For fixed B, Ais not uniquely determined. (in non-conductive
region)

> For fixed Band £, a set of (A, ¢) is not uniquely determined.

(in conductive region)
* lwashita lab.




Basic equations (A-¢@ formulation)

» 7 X i (V x A) + 0_6(A+§zad<p) =J,
e (0_6(A+§zad<p)) 0 9)

» V- Jo = 0 must be satisfied.

» Without a gauge condition, multiple solutions for
(A, @) exist.

» Gauge condition
- V-A=0(Coulomb gauge)
> =0 (in conductive region)

- Tree co-tree gauge (after discretization) (in non-conductive
region)

@ lwashita lab.




Discretization (edge elements)

» The edge element is generally used for the
magnetic vector potential.

» The unknown is set on each edge of an mesh.

- The unknown is given by the integral of the field
value along the edge.

» The vector basis function N is used.

| First order tetrahedral element
t Nt — NmVNl — NlVNm
N is the fist order scalar basis function.

m
Discretization of A: A = Z N; A;
i
* lwashita lab.




Linear system

» A linear system of equations is derived from
the weak formulation of the basic equations
and the discretization. Galerkin method is
used (test function = basis function).

d

[Clx, + E([Ma]xA I [KA<p]x<p) — b] [KA‘P]ij = ZJ o N;-grad N; dv
- (10) e

d

a ([K(pA]xA + [K(p(p]x(p) =O [K¢A]ij = ZJ o grad Ni y N] dv
L — Jo

1
[Cl;; = ZL ;(‘7 XN;)-(VXNj)dv [KW]U - 2f o grad N; - grad N; dv
e 2 0}

UVIO_]U:Z_[ O'Nl"deU [b]]i=2f aNl--]Odv
e 0 e 0
* lwashita lab.




Linear system

» Frequency domain analysis
° % - 1w
- The coefficient matrix results in complex symmetric.

> |C-COCG method is often used to solve the linear system.
» Time domain analysis

. . . d
- When the backward time difference scheme is used, % -
At 7 dt At

> The resulting linear system:

I W

The right-hand side vector bis determined by
[M ] the external current density and x, and x,, in the

previous time step.
@ lwashita lab.
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Linear solver

» The coefficient matrix of the linear system (11) is
symmetric and semi-positive definite.

» The standard solver is ICCG method.

- The application of AMG to the edge element analysis is
not easy.

> Other preconditioning techniques and iterative solvers
are used in some cases, for example, implementation on
GPU.
» Application of the gauge condition
- Applying ¢=0 to the conductive region, we get A-
formulation. The resulting linear system: K,,x, = b'.

o Ky, is still singular. Applying the tree co-tree gauge
condition to the non-conductive region, we get a hon-

singular coefficient matrix.
* lwashita lab.




Tree co-tree gauge condition

é Co-tree edge

» The rotation of the field in the element can be
determined by the valuable on the co-tree
edge even if the valuable on the tree edges is
fixed at an arbitrary value.

* lwashita lab.




Convergence of ICCG method

» When the ¢ =0 and the tree co-tree gauge conditions are
used, the number of unknowns are reduced.

» However, it is known that the convergence of the ICCG
method is significantly deteriorated.

> Usually, the computational time is increased when these gauge
conditions are explicitly enforced.

» Why?
- References

- Prof. Honma, Prof. Igarashi, and Prof. Kawaguchi’s text book in Japanese:
ISBN4-267-71641-9

- K. Fujiwara, T. Nakata, and H. Ohashi, “Improvement of convergence
characteristic of ICCG method for the A -¢ method using edge elements,”
JEEE Trans. Magn., vol. 32, pp. 804-807, May 1996.

- H. Igarashi and T. Honma, “On convergence of ICCG applied to finite
element equation for quasi-static fields,” /EEE Trans. Magn., vol. 38, no. 2,
pp. 565-568, Mar. 2002.
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What is the key?

» The large null space of discrete curl operator
- The coefficient matrix arising in the A-formulation:

1
[Kaal = [C]+ = [M,]
- The matrix C has large null space, which is sifted by

the positive-definite matrix AitMa. When the

conductivity is small, the shift generates small positive
eigenvalues, which causes worse convergence.

- The error belonging to the null space of the curl
operator may converge slowly (discussion in part Il).
> In the linear system based on the A-¢ formulation,
the removal of a redundant unknown causes a
smaller eigenvalue in the reduced dimensional

coefficient matrix.
@ lwashita lab.




Effect of the null space of the curl
operator
» Difficulty in AMG

- The null space matching between fine and coarse
grids
» Difficulty in high-frequency analyses
> Indefinite matrix
> Influence upon the condition number

* lwashita lab.




Part 11
Explicit / Implicit Error Correction Framework

s Collaborators

= Takeshi Mifune and Masaaki Shimasaki
(Kyoto Univ.)

s References

= Takeshi Iwashita, Takeshi Mifune and Masaaki Shimasaki, “Similarities
Between Implicit Correction Multigrid Method and A-phi Formulation in
Electromagnetic Field Analysis”, IEEE Transaction on Magnetics, Vol. 44,
No. 6, (2008), pp. 946-949.

= Takeshi Mifune, Soichi Moriguchi, Takeshi Iwashita and Masaaki Shimasaki,
“Convergence Acceleration of Iterative Solvers for the Finite Element
Analysis Using the Implicit and Explicit Error Correction Methods”, IEEE
Transaction on Magnetics, Vol. 45, No. 3, (2009), pp. 1104-1107.

= Takeshi Iwashita, Takeshi Mifune, Soichi Moriguchi and Masaaki Shimasaki,
“Physical Meaning of the Advantage of A-phi Method in Convergence”, IEEE
Transaction on Magnetics, Vol. 45, No. 3, (2009), pp. 1424-1427.



iOutIine

m We focus on some error correction methods In
Iiterative solver.

= We newly define Explicit error correction method for
a class for some conventional techniques.

= We propose Implicit error correction method.

= Then, we establish Explicit / Implicit error correction
framework

= Introduction of two techniques described in the
proposed framework

= Numerical results confirm the effectiveness of implicit
error correction method.



Explicit error correction method

(subspace correction method)

s Definition

= Ax=b (1) : A linear system to be solved

m A nby nmatrix, x, b: n-dimensional vector

= If an error correction method is given by the
following two steps, we call it one of “explicit
error correction methods”.

= Step 1: Determination of quantity of error

correction

= Solve oruse | Cy =d (X)

C : mby mmatrix, 4 : a function of the

approximate solution X.

(2)



i Explicit error correction method

= Step 2: Error correction (update of X)

N, hew

. X (—)?—I—By (3)

= Yy : the approximation or exact y
o B . nby m matrix

o The dimension m is (sufficiently) smaller than 77in
practical use.



Characteristics of explicit error
i correction method

= Special treatment for errors that
converge slow.

= Use of a different matrix from a
original coefficient matrix

= Famous examples
= Hiptmair’'s hybrid smoother

= Coarse grid correction in a multigrid
method



i Implicit error correction method

= We propose a new technique “implicit error
correction method”.

= The idea comes from solving the original linear

system (1) and the linear system for error correction
(2) simultaneously.

s Derivation of the

= Paying specia
vector xis rep

Then, we get

proposed method

attention to (3), the solution
aced by X+ BV in (2).

A%+ ABJ =b | (4).




i Implicit error correction method

= Next, we consider (2). In most explicit error
correction methods, dis given by a restricted
residual equation of (1):

d = D(b— AX)
= Thus, we obtain |DAX +Cy = Db|.

= By rewriting vectors x and ybyXand y ,
respectively, we finally obtain

A ABY X\ (b )
DA C Ay) \Db,

(6).




i Implicit error correction method

= The above linear system (6) is the formulation
based on the implicit error correction method.

= The linear system (6) is solved by a preconditioned
iterative solver in the proposed method.

= It Is expected that the iterative solution process
produces the effect of the error correction implicitly.
In other words, the linear system (6) has an
Improved condition of the coefficient matrix over
that of the original linear system (1).



iEIectromagnetic fleld simulation

= The advantage in convergence in the A-phi
method has not been explained in physical
meaning.

= We show that the A-phi method can be

regarded as a implicit error correction method
corresponding to Hiptmair’s hybrid smoother.

= Numerical tests show the A-phi method has
similar error correction effect as the hybrid
smoother.



Two formulations In
ielectromagnetic fleld simulation

= A-method
VX(VVXAm)+682[m=JO (7)
= A-phi method
Vx(viA;)+aa(Am J(;tgrad¢) =J, (®)
div(o O gfradqj)) ~0 ©)

A., A :the magnetic vector potential,
v. the magnetic reluctivity, o: the electrical conductivity,
t. time, J,: the exciting current, ¢, the electric scalar potential

V-J,=0 is satisfied.



Linear system based on A-
formulation

Application of the finite edge element discretization and a
backward time difference method to (7) results in

KJ=|eme,+ Mo lix)= ) a0

where At the length of the time step, x,: the unknown vector for magnetic vector

potential, b, is determined by the previous value of the magnetic vector potential
and the exiting current.

C,: the discrete curl operator

f f
M, =jWVi -w;dv M =_[owie -widv (11)
Q Q
w;: face-element basis function, w,: edge-element basis function

We consider the application of Hiptmair’'s
hybrid smoother to this linear system.



Hiptmair’s hybrid smoother

iReIationship between A-phi method and

= When the hybrid smoother is applied to the linear
system (A-method) (10), its error correction
procedure can be written in a form of explicit error
correction method as follows:

C=(G'M _G)/At
d(X)=G" (b, —K,X,) |n@ e
B=G

G : discrete gradient operator, C,G=0 is satisfied.



Corresponding implicit error correction
method...

I<A i MO'G ),ZA bA

LG'™™M, LG'M_G)Yy,) \G'b,

" This linear system coincides with A
the linear system arising on
\ the A-phi formulation.

)

= The A-phi method can be regarded as a implicit error correction
method corresponding to Hiptmair's hybrid smoother.

= Thus, it is expected that the A-phi method has a similar effect to that

of the hybrid smoother for the error of the kernel of the discrete curl
operator.

= Whereas the hybrid smoother corrects these errors explicitly, the A-phi
method introduces unknown variables for the electrical scalar potential.




Numerical tests (Effectiveness of

A-phi method)

log([lrellz / lIball2)

|

= Test model: TEAM workshop problem 10
= Whitney elements, # DOFs 5968

s At =10-3(sec)

A-method —
A-phi method ------- 1

| 1 1 1 1 | | |
0 30 60 90 120 150 180 210 240 270
Number of iterations

Comparison behavior (relative residual norm)

Well-known property

This phenomena has been
explained by the condition
number of coefficient
matrices.



Numerical tests (Effectiveness of
A-phi method)

log(|legll2)

-10 -

11 F

-12 +

-13 I 1 1 | 1 1 1

= We focus on the error of the kernel of the
discrete curl operator A(curl) in conductive
region.

= This error is explicitly corrected in Hiptmair’'s
hybrid smoother.

| = The error of K(curl) in

A-method —— conductive region is efficiently
Aphimethod === removed in the A-phi method.
e Numerical tests confirm that
1 the A-phi method has a similar
41 effect as that of the hybrid
smoother for the error of
K(curl) in conductive region.

0 30 60 90 120 150 180 210
Number of iterations



Numerical tests (Effectiveness of

iA-phi method)

= The error of K(curl) in conductive region is
efficiently removed in the A-phi method.

= The slow convergence of the A-method is
caused by the error of A(curl) in conductive
region.

= Numerical tests confirm that the A-phi
method has a similar effect as that of the
hybrid smoother for the error of K(curl) In
conductive region.

s We give the first physical explanation
of the advantage of A-phi method.




iSummary of part I

= We propose an implicit error correction method that
corresponds to the explicit error correction methods such
as Hiptmair's hybrid smoother.

= It is shown that the A-phi method can be regarded as an
Implicit error correction version of the hybrid smoother.

= Numerical tests show that the A-phi method has a similar
effect on the correction of the error of the kernel of the
discrete curl operator, which results in an advantage In
convergence.



Part Il : TP-EEC Method

e Main contributors

> Yasuhito Takahashi (Doshisha Univ.), Tadashi
Tokumasu (Toshiba Co. Ltd.)

e Reference

o Y. Takahashi, T. Tokumasu, A. Kameari, H.
Kaimori, M. Fujita, T. Iwashita, and S. Wakao,
“Convergence Acceleration of Time—Periodic
Electromagnetic Field Analysis by the
Singularity Decomposition—Explicit Error
Correction Method,” IEEE Transactions on
Magnetics, Vol. 46, No. 8, 2010.



Target problem

e Motors and transformers (practical
simulations)

» Low frequency field problem (50—-60Hz)
o Eddy current problem

* Non—-linear problem
> Non—linear magnetic property

e Calculation for time—periodic steady state
solution



Basic equations

e A—phi formulation
0(A+gradg) _
ot

O(A+ grad¢)) _0
ot

i Vx(WxA+o

J

diV(G in conductive region
A : the magnetic vector potential, v: the magnetic reluctivity, o: the electrical

conductivity, & time, J; the exiting current, ¢, the electric scalar potential

PDE problem -> FEM
v has non-linear property: v= v(rot A) —> Newton Raphson method

Transient analysis should be performed.

Treatment of the time derivative —> (1) Step by step method Conventional
(2) TPFEM method




Transient analysis

O A system of nonlinear equations derived
S(X) +C _t x=f from the finite element discretization

Adopting the & method for the time integration scheme

- C
T()-Clx) =T d s e

(The subscripts indicate time step.)

= Eix)=—a-0)sx)+ox
f =0f+@0-0)f,

Time periodic condition

» Ordinary time—periodic condition: x(t+7) = x(©
T is the period.

> Half time—periodic condition: X(#+7/2) = —x(©




Step by step method

In the step—by—step method, a series of the following non—linear
equations are repeatedly solved until the steady state solution is
obtained.

G, = E _:I:(Xi)_l_é(xi—l): 0 (=12, nt)
( O Initial guess (only used in the first time step)

XO = 9 Xnt Ordinary time—periodic condition case

- Xnt Half time—periodic condition case

Each non—-linear equation has n unknowns, where nis the number of unknowns of
the analyzed model (discrete vector and scalar potentials).



Overview of the simulation code
based on the step—by—step method

e The simulation code consists of three nested loop (for
time integration, Newton method, linear solver).

Loop for time—dependent calculations

Loop for Newton Raphson method

Loop for linear iterative solver

ICCG, ILU-GMRES, ILU-BiCGSTAB etc.

Computational cost: Cx nx N,, x N_x N,

C : a constant value determined by the linear iterative solver
N, : the average number of iterations of iterative solver
N, : the average number of non linear iterations

N;: the number of total time steps



Coil current [A]

A problem of the step by step
method

The transient analysis is a kind of initial value problems of ODE.

If the time constant of the problem is very large, many time steps are needed
to obtain the steady state solution.

In practical simulations, the analyzed model involves an external circuit,
which often leads a large time constant.

25 ,
20 One period
15
10
5
0 Vad \ Y
0 0.05 0.1

FEM V =1000(1— cos wt)

Time [s] region



Time—periodic finite—element
method (TPFEM)

e All linear systems are combined with the
time periodic condition and are solved
simultaneously.

CT()FC(x,) | [f

-[,(XZ) - (E (Xl) f2 Solve this large system of
T (XB) —C (XZ) = f3 =) non-linear equations by

means of Newton Raphson
method.

:I:(Xnt) _é(xnt—l) fnt

However, the convergence of the Newton method is not good, and thus
TPFEM is usually inferior to the step by step method in the computational time.

But, TPFEM has an advantage in parallel computation.



Main idea

e Acceleration of convergence in the transient
analysis by using EEC (Explicit Error
Correction) (Subspace correction) method

The problem: linear system of equations Kx=b

The approximation vector X is updated as follows:
r=b— KX
BT KBy — BT I' is (approximately) solved.

—~

X .y = X+ By




EEC method for non—linear
equation

K(X) =

D| : the nonlinear equation to solve

K()? + e) =D ‘ﬂ Linearization

Equation for the error

K(X) +

oK (X)

KX e_p o e = b—K(X)
OX OX

BeH — BT (b . K ()'Z)) Equation for error

OX

correction (lower-rank)

<, NeEw

X

< X + Be,

Equation for error
correction (lower—lank)

EEC Procedure



What kind of errors are slow In

convergence?
e Tokumasu and Takahashi s idea
o The DC component of the error can have a
low convergence rate.

> How Is it extracted ?
Use TPFEM formulation (for K(x)=b)

The DC component of the error has the identical
value of potentials in all time steps.

The DC error component is written as
(ellezl...,en,ellezl...,en’ ...... ;e1;e2;'”;en)T

in TPFEM formulation.

It is rewritten as (11---D7(ey, ey, -+, e,)T

B €y I: n x nunit matrix



TP-EEC method

(1) Perform the step by step method for nt
time steps

(2) Perform the following error correction for
the current approximation vector X,

OX
~T T T T
X' =(Xg s Xy yeeey X))
B= (l, I,..., |)T (n x nt) by n matrix
K : the coefficient matrix in TPFEM

Update X. to X, +Be,

(3) If the convergence condition is not
satisfied, return to (1) with x,=%x_, .

Solve

Be,, = B' (b K(X))




Simplified TP-EEC

e The technique is available only for a half time periodic problem.

~ ~ ~

nt - _ |
(Z(T' B Ci )+ 2C ntjeH =-C (XO)— C(Xnt) The equation for error

= correction
- Assume that e, == a(_xo — xm)
- Adopt the backward Euler method (&=1)

- Multiply both sides by g T
1

(At qT(Zin:lS i)q/qTCq +2)

When the influence of the matrix Cis larger than S, which corresponds to the
case that the time constant is large, a = 1/2

o =

1 The simplified TP-EEC method, which is
eH - — (— Xo — Xnt) unnecessary to solve the linear system for
the error.



Numerical tests (Iron core model)

SS400
(6=7.505% 108) ~

~

1w

200 pF
1
Coil: —
36)(')0 Turn 9
j Half periodicity: V=1000 sinwt
] or
FEM region Ordinary periodicity: V~=1000(1—-cos w?)
Elapsed time (s)
Methods — -
Half periodic problem Periodic problem

Normal step-by-step 3360.4 (207) 6848.7 (432)
TP-EEC method 648.7 (39) 1999.3 (121)
Simplified method 1101.8 (68)

Numbers in parenthesis indicate the number of time steps required for
obtaining steady state solutions in one period



Coil current [A]

Coil current [A]

——TP-EEC —=— Simplified

' . | .
; Hah_c time— —— Normal — Solution
20 F ¢ periodic proble . ;
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Converge to steady state

|
Ordinary time— —o—TP-EEC
periodic problem —— Normal

—— Solution
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Relative error of eddy—current loss [%]

1.0E+2
1.0E+1
1.0E+0
1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5

1.0E-6
1.0E+3

1.0E+2

1.0E+1

1.0E+0

1.0E-1

1.0E-2

W)
A

Half time—periodic problem

A

o TP-EEC

—o— Simplified

=
Sal %
&

—— Normal
. |

P Y Y

Ordinary time—periodic problem

I

A
TRV ”&

E
g
=

|

——TP-EEC  —— Normal

0.02

0.04
Time [s]

0.06



Numerical test (IPM motor)

coil

permanent

Mesh of IPM motor (1/6 model)
magnet

(#Elements : 17,556, #Unknowns : 49,798)

The stator is satisfied with half time-
il o e e periodicity
i =
G e +
shatft The rotor has ordinary time—periodicity.

simultaneously considered in the TP-EEC method

The simplified method is only applied to the stator

Methods

Normal step-by-step for 30 periods
TP-EEC method

Simplified TP-EEC method

Elapsed time (3)
Not converged
4167 (244)
4079 (242)




Torque [Nm]

Eddy—current loss [W]

12000
10000
8000
6000
4000
2000

-2000

6000
5000
4000
3000
2000
1000

" Solution — Normal — Simplified

— TP-EEC

180 360 540

720

900

1080

!

W

180 360 540
Electric angle [deg]

720

900



Summary for part llI

e The TP—-EEC method was introduced to
accelerate the convergence to the steady
state solution In a transient analysis.

> The TP—-EEC method is based on the error
correction method for the non—linear equation.

o It focuses on the error correction of the DC
component of the error.

> Numerical tests confirms that the TP—EEC
method improve the convergence.



Related work

e Parallel TP-EEC method was proposed.

(1)

(2)

(3)

(4)

Each process/thread independently perform
the step—by—step method. (Parallel in time)

The continuity of the solution between
processes/threads and the periodic boundary
condition should be satisfied. The EEC
framework for non—linear equation is applied
for reducing the gap.

The technique can be applied to any time
evolution analysis (non time periodic problems).

Parallel TP—EEC can be regarded as one of
PARAREAL method.

Y. Takahashi, T. Tokumasu, K. Fujiwara, T. Iwashita, and H. Nakashima,
“Parallel TP-EEC Method Based on Phase Conversion for
Time—Periodic Nonlinear Magnetic Field Problems,” IEEE Transactions
on Magnetics, Vol. 51, No. 3, 2015.



Part IV Folded preconditioning

y AR E: E=EIME(EXR)
» HEIMRRE: BEREEA(REX)
» References

- Takeshi Mifune, Yasuhito Takahashi and Takeshi lwashita, “Folded
Preconditioner: a New Class of Preconditioners for Krylov
Subspace Methods to Solve Redundancy-Reduced Linear Systems

of Equations”, IEEE Transactions on Magnetics, Vol. 45, No. 5,
(2009), pp. 2068-2075.

- Takeshi Mifune, Yasuhito Takahashi, and Takeshi lwashita, “New
Preconditioning Technique to Avoid Convergence Deterioration
due to the Zero-Tree Gauge Condition in Magnetostatic Analysis”,
IEEE Trans. Magn., Vol. 46, No. 7, (2010), pp. 2579-2584.

- Yasuhito Takahashi, Takeshi Mifune, Takeshi Iwashita, Koji
Fujiwara and Yoshiyuki Ishihara, “Folded IC Preconditioning in
Quasi-Static Field Analysis Taking Account of Both Tree-Cotree
and $=0 Gauge Conditions”, IEEE Trans. Magn., Vol. 47, No. 5,
(2011), pp. 1342-1345.
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AX =D
N: AREEXDREEBDE
A REITH] (NXN)

X NRDEESTR)IL (FRED)
b : NROABDARYKRIL(BXED)
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8%

AX =D (AECNXN, xeCV, beCN)

B ATV T OEBE: xO
XEED=H, REHTIE xXO=0Z{KRE

» ROLGNTF-FIET XD ZEHITSH(i=1,2 ...)

» FRE () =p - A xO BN+ /NS0 IR EH
Y
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» 51 ATYT D LUEE KOA, b) MoiER

2FY. x® espanib}
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